ruthenium

Stable	Atomic mass*	Mole
isotope		fraction
⁹⁶ Ru	95.907 598	0.0554
⁹⁸ Ru	97.905 287	0.0187
⁹⁹ Ru	98.905 9393	0.1276
100 Ru	99.904 2195	0.1260
101 Ru	100.905 5821	0.1706
102 Ru	101.904 3493	0.3155
104Ru	103.905 433	0.1862

^{*} Atomic mass given in unified atomic mass units, u.

Half-life of redioactive isotope

Less than 1 second

Important applications of stable and/or radioactive isotopes

Isotopes in physics

- 1) ¹⁰⁰Ruthenium is the product of a rare (and hence very long-lived) nuclear decay process known as double beta decay.
- 2) The ¹⁰⁰Ru nucleus is formed by the decay of ¹⁰⁰Mo. A careful measurement of the half-life for this decay, which is on the order of 10¹⁹ years, can be used to place an upper limit on the mass of the electron neutrino, a neutral and weakly interacting subatomic particle first postulated by Wolfgang Pauli in 1930.